Role of Standards for SEEDS

Silvia Nittel

National Center for Geographic Information and Analysis

Department of Spatial Information Science and Engineering

Motivation

- ESE collects, maintains, distributes, and analyzes massive amounts of geophysical data sets
- ESE includes many diverse 'scientific tribes'
 - Highly specialized small scientific communities
 - More and more multi-disciplinary research
- In search of the next generation infrastructure
 - Allows to access, process and distribute data and results faster, more flexibel, and convenient

Interoperability and SEEDS

Motivation

- The 'next generation infrastructure':
 - Easier, fast search for and (online) access to data
 - Simpler data subsetting and integration
 - Allows for organic growth of infrastructure
 - Allows for specialization of 'tribes'
 - Accommodates new scientific interests
 - Provides for interoperability and re-use of tools, data, mechanisms
 - 'Cheaper' and faster turn-around'

Requirements for Standards

Standards should make the task simpler

- Let scientific tribes do things in their familiar, specialized way, does not hamper specialization
- Makes tasks for multi-disciplinary groups simpler
- Allows all groups to re-use tools, and mechanisms
- 'Light touch'
- Adaptiveness, and flexibility

Necessary

- Common set of minimal standardized interfaces to bridge/'translate' between differences
- Processes to find, define, and implement them
- Community Engagement

Soo.....

- "Good" standards make life simpler.
- What are the pitfalls?
 - The standard has to be the right 'fit' (what to standardize ?)
 - Provide tools that help using the standard, or even hide it
 - It takes a lot of effort and resources to develop and maintain standards.
 - Community acceptance is necessary
 - Continuously new technology, instruments, mechanisms,...
- Need for Standard Process Models
 - What works, what does not?
 - We cannot know in advance which standards will evolve or be necessary, but we need a process model and standards body that enable the evolvement.

How to get 'good' standards?

- Essential to process: 'Community Engagement'
 - Community-based development is necessary (experts!)
 - The need has to come out of the community.
 - Small teams of experts from community.
 - The standard has to be the right 'fit': concrete needs
 - Small is beautiful: fast turn-around of problem specification, testing, standardization
 - Open, democratic process
 - Everyone can suggest a standard
 - Each standard can be commented on by every community member
 - Motivate community to accept standard rather then enforce
 - Open source and/or public domain tools are essential THE UNITY

Lessons learned: What does not work well?

- If scope of standard is too large/too complex
- Problems/needs are not concrete and clear
 - why is data interoperability hard?
- Turn-around too long
 - Better smaller scope, and evolution
- Working groups too big
- Someone 'owns' the process and/or the standard
 - Others have only 'advisory' input
- Trying to come up with the best fit solution in a 50 experts group discussion
 - People tend not to agree, and like to discuss. Tedious.
 - No implementation

Examples for Successful Standards

IETF (Internet Engineering Task Force)

- Background:
 - 1980s: Many isolated computer networks (arpanet, uunet,....)
 - 1986: how can these networks be used seamlessly?
 - → Internet
- IETF as community-born organization:
 - "The Internet Engineering Task Force is a loosely self-organized group of people who contribute to the engineering and evolution of Internet technologies."
 - "The IETF is not a traditional standards organization.... The IETF is made up of volunteers, many of whom meet three times a year to fulfill the IETF mission."
 - » From "The TAO of IETF"
- Process to adopt standards (later talk)

Successful Standards

OpenGIS Consortium:

- Background
 - 1993: time of object-oriented distributed computing
 - Small group is interested in defining Open GIS:
 - Define vendor-independent interoperable GIS interfaces
- Standards Body: OpenGIS Consortium
 - Members, fees, board of directors
 - Standards are developed by members
 - Standards are easy to influence, and everyone can participate in the process
- OGC went through several process models
 - Discussion approach (1st generation): 3 year turn around
 - RPF approach (2nd generation): 1 ½ year turn around
 - Testbed approach (3rd generation): ca. 6 months

SEEDS and Standards?

- Caution: Standards development is expensive
 - Leverage existing (commercial?) standards whereever possible
 - Adopt, profile, extend existing standards
 - Re-use commercial software products
- Nevertheless:
 - A SEEDS Standards Body and a SEEDS Standards Process are required
 - To identify, extend and adopt possible useful standards
 - Both need to accommodate the diverse communities
 - Resources to support standards identification, profiling, adoption, development

Models for Standard Processes

- Personal background
 - Used standards for distributed interoperable software platforms (CORBA) (pre-Java)
 - Worked with OpenGIS Consortium since 1995
 - Co-author and editor of OGC's "CORBA Simple Features"
- Study Group "Long-Term Standards and Standard Processes"
 - Group of people with experience in developing standards
 - Group investigated and analyzed a large variety of relevant standards and standard processes for ESE
 - Identification of Standards Needs relevant to ESE
 - Identification of successful Standard Process Models and Standards Bodies